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We examine the following problem. Two material points mltP (the first and se- 
cond players) [ 1, 21 move in a three-dimensional space under the action of po- 
sition forces F r,s = --c~~nz~,~r~,~ , of attraction to a fixed center, and of control 
forces fi,a directed arbitrarily. We assume that the number 02> u, that the 
masses +,s are constant, and that rXit2 are the radius vectors of the points rela- 
tive to the center, The fotce fI = mlu is bounded in total moments D, 5], 
while the force fa = -JZZ~V is limited in energy 

The task of the fist (second) player is to minimize (maximize) the time of 
enwunter with the opponent at a distance R = I rl - r, ] > 0. The paper is 
similar to [5, 63 in the methods used to solve the problem. 

1 l After norming, leading to the equality w2 = 1 (for 0s > 0) , the equations of 
relative motion take the form 

x’= ya, y,‘= - x + Yp2 J X + U, + Va (1.1) 
yp’=-yaYp/s+up+vp, f.L’=-17.&I, (v”)‘=-va 

in the variables zr = r, - r-a, Y, = r,’ - rs’, x = 1 5 1, y,, Yp , The vectot 

ia (1 ia, B, Y I = 1) is chosen along vector zI,‘the vector _@ along the transverse com- 
ponent Ypr of vector Y,, and the vector 1, completes the triple. If Ypr = 0, the pair 
of unit vectors jp, y are directed arbitrarily in a plane normal to j,. The lower indices 
indicate projections with respect to the unit vectors. When Yp = 0 the third equation 
of system (1.1) becomes 

Y@’ = [(us + U@)” i- (uu + u.JZl!‘* 

The motion governed by system (1.1) takes place under the phase constraints p > 0, 
v2 > 0. The impulse control u = p16 of the first player leads to the position IQ [x, 
Ya, Yp, p, Y] as a result of the impulse 

24+) [X, Y,(l), Y&l), p(l), VI 
Y,(l) =r: Ya + lh. a9 y&l) = I(&3 + pL1,# -t p12ylLi’, $1) = 

P -I Pll>O 

The de~nition of admissible pairs u (IU, v), v (w) was given in [5]. 
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We agree to some notation. The number 5 and the vector j, , under a shift along a 
trajectory of system (1.1) with u i- v =- 0 , are transformed by instant t to the number 

zt = [(a%, + ~~a,)~ + yp2a12]1~~, at = sin t, bt = cos t and to the vector 

L, t = kbt + m4 ia + wthl / xt l 
In ( w, t )-space we shall introduce below, 

in alrterent ways, the runction 6 (y, t) and the function tc (w) , the latter being the 
smallest positive zero of function c. The replacement of the subscript r by 5 signifies 

in all cases that t = 9. For example, al; = sin tC (w), zt = s+‘~ . 
If a domain Dj,~ is specified in some way, say 

a, t m - v)/t / 2 - (sin 2t) / 4 > 0, t E (0, x / 211 

and if the numbers Y, t satisfy both bounds simultaneously, then the domain 

D,, c [R - vftc / 2 - (sin 2tc) / 4 > 0, tr. E (0, 3.c / 211 
indicates a boundary in w-space. 

Suppose that at t = G the first player has realized the impulse u = p.r6 and that 

for 1 > 0 employs a finite U, while the second player applies v ; motion for t > 0 
is a result of impulse w(r). The notation t<’ (w(l), U, v) refers to the right derivative 

of function tC along a motion due to system (1.1). 

2. We split up the construction of the solution into a series of auxiliary problems. 

Problem 2.1. let p = 0. Find the control v“ (w, ~1 = 0) and the time tc (w, 
p = 0) of slow-action on the set M [X = R > 01. The restriction R > 0 is neces- 
sary for Problem 2.1 to make sense ; we seek the problem’s solution in the domain 

WI [S > RI. An integration of the characteristics [ 11 by the scheme in [6] in the fixed 

system of coordinates x1, y,, leads to the following conclusions. 

2.1.1. let w E Wr be some position for which exists a function tc (w, p = 0) 
continuously differentiable at this position and let the optimal trajectory issuing from 

w hit set LU at point x1; then for tc < n the control v” has the constant direction 
- xl / 1 xl 1 along the trajectory, while its absolute value along the trajectory changes 

by the law 1 v” 1 = c (w) sin (tc - t), where c (w) > 0 depends solely upon the 

trajectory (characteristic). 

2.1.2. A formal application of the necessary conditions leads to the conclusion 

that the derivatives dt, / dv2 > 0 must be wnstant along the characteristics of the 

main equation Cl]. On the other hand, we have the obvious equality at, / av2 1 w~M= 
0. This compels us to assume that the derivatives mentioned are discontinuous. The dif- 

ficulty is overcome by 
whole energy resource 

a trivial argument: the slow-action control v” consumes the 

v2. The last assumption leads to the equalities 
0 

s 
c2 sin2 (tc - t) dt = ~2 (2.1) 

‘c 

c (4 = VI& d, = vt/2 - (sin 2t)/4 

We fix the jaa,Y corresponding to some position w as a fixed triple. According to 

2.1-l the control U* has the form 

v” = (vaoja + up”jp) c sin (tr. - t) 

along the characterisitic. Here t > 0 is the time of motion along the characteristic, 
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while the function 2~ and the vector 

%%L + WI3 = - Jl / I Xl I = Xl (k) / I Xl (Q I (2.2) 

are yet to be determined but are constant along the characteristic. The components 

x,,~, xcp,~ of vector x1 (tc) correspond by Cauchy’s formula to the equations 

‘c 

x=,~ = ~9 + y,ar + V,‘C 
s 

sin2 (tc - t) dt (2.3) 

0 

Equalities (2.1) - (2.3) and the condition for the continuity of tc on set Jv permit us 
to seek tc as the smallest zero of the function 5 = R - vdt - xt. The function 

5 (4 t) is obtained by superposing the monotonically decreasing function - vdl on 
the t-periodic function R - xt . It is easy to verify that not more than two points 
‘tl < z2 of isolated maximum of function c are present on the period t E (0, n) of 
function R - xt ; moreover, the bound c, z 5 (w, al) > c2 - 5 (w, tr) is valid 

for v > 0. when ya = 0 a further case is possible, namely, ctco = 0, [rzo < 0, 
i.e. the “isolated for t > 0 ” maximum at t = 0. However, the bound & > ~a 

for all those positions at which ~2 < n exists guarantees the continuity [S] of the func- 

tion tc (w, lo = 0) in the region tc E (0, n). This important fact, together with the 
equality <‘l=o= TV, enables us to assert that tr; is the first instant at which the trajec- 

tory w” from position w hits set A4 . Trajectory w” is generated by the equation 

2~’ = a% (v / 4)i,+c, w E IV”,” E iXG > 01 

V” = at (v / &)js, w e IV”,” n [“r, = 01 

s = + w&J v(- xbc+ y,a#, j, = sja + vl - s” ja 

where W”~” [ cl > 0] denotes the domain admitting the zero tr. The control v” satis- 

fies all the necessary conditions in the domain w f Won0 n [xc > 01. It can be shown 

that the control u” realizes the equality 

0 = 51’ (w, u”> < 51’ (WY 4 

at positions w E ltr, = ail.This equality and bound were the foundation of the con- 

struction of v” at the positions w E [xc = 01, since here the characterisitcs stick to- 

gether and admit of a whole “sheaf” of optimal controls u0 with a like time t-,. It is 
clear that the derivatives at, / 8w do not exist on the set [pi = &.I . This remark is 
valid in all that follows. By analogy with [5, 61 we continue the control into the domain 

W 090 = [a: > R] \ w”so by means of the equalities 

vo=v”(w, tr;=‘cr), w E K,o f-l K (w, 0) < 611 = w,o,o 
ug = 0, w E WOlO \ who,0 

Theorem 2, 1. In the domain W”I” the control V” realizes the slow-action 
tc (w, p = 0), while in the domain Wo,o the control ZY, avoids a position on set M. 



558 G.K.Pozharitskii 

To prove the first assertion it is sufficient to verify the estimate-1 = t’c (w, v”) > 

t< (w, V) for w E [;cy > 01 and for those controls II (at the positions w E [Q = 01) 
which realize the finite derivative tc* :~nd to show that the relation 

tr’(w+Iq=OoI, Y)-+ --oo 

is valid for the rest of the nonoptimal controls. The second assertion follows from the 
estimate 

(max, 5 (w, t E 10, n: /21))& < 0 

This estimate turns into an equality for w E WI,,, and into a strict inequality for 

w = WO,O \ W,O. 
Such are the results of solving Problem 2.1, 

3. Past experience [5, 61 shows that the first player‘s optimal control is an impulse 
control ; therefore, we formulate one more auxiliary problem for many positions. 

Problem 3.1. Among the impulse controls u = ~~6, 1 p1 { < p find the con- 

trol u0 corresponding to the equality 

t$) (w) = min & (w(1) (w, u)) 

The solution of this problem reduces to simple operations by the implicit function 
theorem and has the form 

5 = R - vdt + pLat - St (3.1) 

If function 5 admits of a zero in the domain Dlrf [E z R - vdt > 0, t E (0, n / 
211, then t,(l) (w) = tc (i. e. the minimum equals the smallest zero) and is realized 

on the vector u” = - pjcL,<. 

Problem 3.2. Find the impulse uO = - ~~a$ realizing the estimate 

t, (w(r)(%)) \< k (r@(l) @I)) 

Solution. Among the impulses p_r which preserve the inclusion z&l) E f)l,r the 

impulses qOt = mu” (0 < m < 1) solve Problem 3-2. The latter family has been 

defined to within a factor. The correspondence is verified on the basis of the relations 

5 (WV 0 < 5 (r@ (k), 4, 5 (w, k) = 5 (nW~“), tr) 

Pr.ob1e.m 3. 3. Among the family uco, find a vector uIo and a finite control Us’, 

as well as a control v“, consistent with the estimates 

k* (w(l) (=1X uz”, v) < tc” < &’ (WQ) (U&f), u, 0”) 
tr’” = tr’ W’YtJlO), uz”, v”) 

Problem 3.3 corresponds to the control 

U1° = U”, u2* = 0, 27” = I u” I l+a,jr w E 4~ fl LX, > 01 (3.2) 
UIO = us0 I: Q =: 0, u” = 1 u” 1 (sja + 1/l - s2&) z gjs 

w = &,, n kc = OJ 

1 u” f = ppq’, s = - ELr’i V(- sac + yb# , 18 =I p iat 

The solution of the Problem 3.3 relies on the relatiOnS 

t;c; = - 5; - a< I 8 I + FL”% + RI + R2, 51;’ = wat Ikl, (3.3) 
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4 = ag (14 + Lc4 > 0 (3.4) 

Rz = u<v~~,~ - (d; / 2~) ve < Rz (w, v”) = ag Iv” 1 (3.5) 

The third term in the right-hand side of Eq. (3.3) points to the equality ui” = ~9. 

Bound (3.4) shows that R, > R, (w, uzO = 0) = 0. Bound (3.5) proves the correct- 
ness of the choice of control u”.All these results are obvious in the domain Dt n [n> 
0, 5~’ > 01. In the domain DC n 1s > 0, cc’ = 01 G DC /J Ix< > 0, tt = 
z,] the derivative tc’ (z&l), u,“, U) exists not for all U. However the relation 

tc* (d” (u,), uz”t v) --t - 00 as WC’) -+ DC n [xc > 0, tc = ~~1 is valid for any 

V# vO, In the domain DC n [xc = 01 the necessary conditions permit us some lee- 
way in the choice of u” and this choice is made from the estimate 

0 = L’ tw, use, no> > 51” (w, uz”, v) 

4, Let n f 2 cz Dltt, i.e. the bound E (w, n/2) = R - vf/n/2 E En/z > 0. 
Formula (3.3) suggests that we need to set u” = 0 beyond the boundary tc = ax / 2. 
The formation of the slow-action v” on the boundary 5 (w, n / 2) = Cl of the domain 

[ 5 ( w, n / 2) < 01 leads to the function 

5 = R - vdt + p - x1, (w, t) E D,, [En/r> 0, i E (n/2,41 (4.1) 

while the successive solving of Problems 3.2, 3.3 leads to the equations 

Ul O=nO=uO=o 2 , v” = I qAz,c, w E D,,, n IX< > 01 (4.9) 

Ul 
“=n”=u”~o 2 , v” = pops, w E D,,< f-) [xc = 01 

Beyond the boundary E (w, t) = R - v dt = 0 we consider two functions YE (t), 

4 (9 9 namely, the solutions relative to v, t of the equation E = 0, and we assume 

that tC (v) < 3t / 2. 
To construct the solution we shall argue in accordance with the scheme in [5]. Let 

ti e (te, n / 2) be some number and let the first player’s supply of p be so large 
that at t = 0 he can apply the impulse ui = pi16 

pii = - (zb, 1 ai + ya)ja - ypjp, a, = sin t,, b, = cos tl (4.3) 

while for t CZ (0, t, (v) - tJ he can control by ul = -v. For t = 0 such a con- 
trol realizes the equality ,ji) 

I = I(& + yPa,)"+ ypL,Jl~ = 0 

while for t E (0, tl - &J it preserves the equality 

$1 = [@t,-t + Y%t,-t)” + yp%$,_tp = 0 

and the equalities E (v, te (v)) = 0, xtstc = 0 prove to be valid under any action 

taken by the second player by the instant t1 = tl - tE (v), if I.& (t’) = cc, > O,i. e. 

the first player has a sufficient supply available. These equalities show that the inclu- 

sion w E D1.~ is automatically realized by the instant tl. The total expenditureof 
the first player’s momentum at the instant tf is 

I~Pl=,PI’,+~lv,dr 
0 



560 G.K.Pozharitskii 

Suppose that for fixed tr, tE the second player selects the control modulus 1 d 1 by 
solving the “isoperimetric” maximum problem 

under the condition 

f’ 

s 
0 

,u’,dz =max,t’,u s 
a 

tr. 

Id% 

s v=at = v= - YE2 

0 
This problem’s solution has the form 

:I 

s 
1~9 1 dt = IC (v, t,, tl) = [(v* - vc) ($ - t&1’2 

0 

I Q'l = w1- %I 

(4.4) 

Suppose that by varying tc within the limits TV E 19 (u),. tlf the second player selects 
the control 1 ul 1 from the condition that the function xs (v, tt, tI) be maximized 
with respect to t& . Denoting (x~)~ = dz? / at,, we obtain the function 

(I?)< = (--dvcs / at,) (tx - te) - (VZ - V(2) 
where 

- hi=/% = R”@/d$, aE = a+, d, = dtzf, 

It is evident that the funcdon (x’)E changes sign from plus to minus at least once as 
4 ranges the interval [& (v), tll. On the other hand, the equality 

(x2)+z, E = 2 (Wd,6) aE I@,&’ - at3) (tl - te) - @dCal 

is valid. The derivative of the first factor within the brackets 

(WE2 - u&’ = - a(dE2 + 2a,bE) < 0, aE = sin tg, b, = Caste 

points to the bound (x2)~,~ < 0. This means that the function (x*)c admits of a unique 
and- ~ntinuo~ly differentiable zero 9” (v, tl), i. e. the point at which the function x2 
is maximum with respect to t; 

X0 (v, tl) = x (v, tc*, tl) = maxtEx (v, t,, t) 

As a result the possibility of applying control U, depends upon the fulfillment of the 
estimate 

5 (wz t1) = a1 (P - 1 A1 I - x0 (v, tl)) > 0 

and the function 

5 = (cl - X0 (v, i)) o - &, (W, t) E &,t I!&,, < 0, t E (4.5) 

(f< (v>, Jc i a1 

can be continued to the function 5 in domain D3,t. The solution of hoblem 3.2 by the 
impulses u = ~~6 under the constraint r&) E D3,1, as well as of Problem 3.3, are 

u0 = mu*, ulo = 22 (4.6) 
8 = I qh& 1L” = - f&l ia,$r w E D,,, Iq = 01 

27" = p/j&, zl" I &Q z.z - 0, w E ll),,c ["c = 01 
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where the numbers 1 u” 1, 1 pl* 1 , in contrast to (3. Z), are given by the equalities 

I Plo f = 9 / % 1 u” 1 = xx (Y, tc) I (tc - tr” (Y, Q) (4.7) 

The restriction tc < n / 2 is pointed out by the equation 

tc‘5Q’ = - 5’ - al: / u” 1 -j- (pl - $) b, -j- Ii1 f l?z (4.8) 

where the term &, is of the form (3.4). while the term R2 , in contrast to (3.5). has the 
form 

B, =- a<~$,,~ - (1 u’= f ,’ 2) v2 < Rs (w, 8) = q] 8 J 

The construction of use, u” in domain t),,; fl [Q = OJ is a repetition of the COR- 
struction in domain DalC n ]xr = 01 ; however, u” is computed from Eq, (4.7). 

6, Equation (4.8) indicates that the control ul is scarcely reasonable beyond the 
boundary G IE (w, n / 2) < 0, t-, = n i 21 of region D,,\: . Let us assume that 
there u” = 0 and construct once again the slow-action v” on the boundary G ]E (w, 

n7c/2)\(0, 5 ( ~1, x / 2) = 01 of domain D,,, from the domain D, [E (w, n; / 
2) < 0, 5 (w, n i 2) < OJ. 

Let Vg be some number equal to the second player’s reserve at tc = rr / 2, and let 
tg < n I2 = tg" (vg, n / 2). Integration, performed by the scheme in Sect, 2, leads 
to the function 

x_ = p - .v’V&.” - vi1 @g)’ l/t - f_ d&,& - 5t 

&x,a = u’(t - n/2)/2 - (sin 2t)pi 

The functions vg2, tg are as yet unknown. However, the necessary conditions point out 
that the absolumvalue 1 u” 1 of the optimal control is continuo~ on the boundary C. 
This solution yields the equality 

1 u” 1” = (vg2 - vt2 (fg))l(f - &) = (v” - V&&n/2 

nominating the function vg2 from this equality and replacing tg by ,+, we obtain the 
function x* = p - (v” - v$(t&i~s (n/2 - t, 5 &-np - St 

We continue the function x (v, TV, t) into the region ftt < it I 2, t > rc / 2J 
by the formula 

x2 = (Y” - VFi (Q) (r$ - tg + &x/s) 

The operation maxtc~,/a ?ca leads to the function (~s)~ = (- dvc2 / d&)(n / 2 - 
+ + &z,2) - (v” - vg2) and continues the function tea (v, t) as a zero of the func- 
tion (x2& into the domain 

In the domain 

&& (WY 37, / 2) < 0, W)~/a > 0, t E (n / 2, 3n / 2)J 

the function tea (v, t) is continued by the equality +” = n/2. All the constructions 
listed lead to the fiction 
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5=IL - x” (v, t) - Xf, 04 4 62 f),,f u f)w (5.1) 

(x”)~ = (Y” - vc @r”)) (n I 2 - g + &-qz), (w, 0 E D*,t 

(x0)” = (9 - a?= I n) a&~, @A t) E D,,t 

Problems 3.2 and 3.3 have solutions of the form 

UIp = r.&&” S u” zz 0 (5,2) 

Here 
/rFf = 
pq = 

3tyD/(31,f2-ttEO~v,tr)--d,,Z-t~, wEDe,< 

x,“ia I dz[a-tr* w Ez &, 

xc0 = x0 (v, tr), %!a = 3c (Y, 3x I2, 9) 
j_-6 -_ _ sj, + 1/T"YPjp 

6, When a2 = 0 system (1.1) loses the term in - x in the second equation.‘Fhe 
necessity of norming the time drops out, We present a brief summary of the results for 

this sfmp1e case 5 = A - v l/f13 + i;lt - 21, (w, t) 6% I)r,g rk (wJ) = 

R- vyrm1301 

5 = (p - x0 (v, t)) t - 5f, (w, t) E Lf,, t fE (w, t) -e 0 I 
342 (v, $3, t) = (I+ - 3P I t& (t - 9) 

b2k = SRa (t - tc) I t$ - (va - 3R” I tg2) 

d (v, t) = x, (v, trt’ (v, t), t), zt = f(x - ?A&* t %3*p 

As above, the function tCO (Y, t) is a zero of the function {x~)~, The solutions of Prob- 
lems 3.2, 3.3 have the form 

% o ZCz &” = - pja,c, 2.4: = 0, 8 = /u"f ja,c, w E D,,c f-) Iq > 01 

q" Z u" -_ u2* = 0, v" = 1 v*i ja, WE D,,cEz I;z, = 01 

f u” 1 = tp I y-q / 3, ia, w E D,,r 

Ul * Z gp - - (q I h&z, ‘;, u; = 0, v” = 1 v” 1 ia, <, w E Dz, r; f-) Is > 01 
OS Ul 0, uz” = a” -_ - ZJ, jy :z.z 1 q j&,, w E D,, z f-j IX< = 01 

where the modulus 1 u” 1 is given by the equalig 

1 u” 1 = x0 (v, t) I (8 - t; (v, t)), w E D,,r 

7, The controls u”, $ generate a time-varying vector zro with projections s,‘, 
X@O. Let us give a brief geometric description of this. Let w EZ 1)2,4,sr c. We fix 

j%P,Y ; then to make the position fall onto the boundary of domains D1,, the vector 
~1” Is varied in accord with the equation 
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X a= Xbt + Y&t + xa,qv XB = YPQ + “Lx 4 

xcz, q = (if%, a% “P, q = (ia, dPQ 

q = 1 v” 1 
s 

sin (t - z) sin (tc - z) dr 

0 

Here (j,, &, a are the projections of vector ja, c on the unit vectors ja, a. By stret- 

ching the point somewhat we can assume that the representative point moves along an 

ellipse with a moving center 0 (z,, 4, q, J. The orientation and axis magnitudes of 

this ellipse are constant. If the position w E D,, C, the motion from it unfolds for 

t > 0 by the equations 

X0- a - Xb, i- ya% + Xa, q, Xp” = YP(‘) + 9, Q 

y,(l) = y, + ua”, Yp"' = YP + up” 

since when w E D1, r. the first player starts to control with the impulse u”= - Ilj,, c. 
If w E D,, c, then the impulse u” = - (xc / ar)ja, I; leads to the equality 

Yp(‘) = 0, while the equality u” + v” z 0 shows that up to falling onto the boundary 
of domain D,, \: the motion is rectilinear and follows the equation 

xa 
0 = sbt + y,%t, XpD = 0 

The equalities p = E (w, tc) -= XC = 0 must be fulfilled on the boundary of domains 
D,, r. and D,, r. After intersection with this boundary the motion proceeds in accord with 

the equations 
2, 

0 

= x4 -t- wt + (i&q, XP’ = (jsh3q 
Here the values x, ya, j,, tc take on the boundary of domains D3, r. , D,, c and the 
time t is counted off from the instant of falling onto the boundary. Motion takes place 

along an ellipse with a biased center. It can be shown that when t = tc the trajectory 

indicated is tangent to the sphere 2 = R. 

8. Further analysis meets with one essential difficulty which consists in the following. 
It can be shown that with respect to the variable t the function 6 admits of no more 
than three isolated maxima &, 7&, 5s on the interval t E (0,3 n/2) at the points ‘F~, T~,Q, 
respectively. The last maximum is not essential for the analysis of the structure of func- 

tion t; since the estimate L > 6s is valid. However, it is geometrically obvious that 
on the set F [ & = 0, & > O] the function tC undergoes a positive jump as it passes from 
the side of Fr[ Cl> 0, 5, > 01 into the domain F,[ cl < 0, C2 2 01. In fact, the equality 
tr = ‘cl is valid on set F , while the estimate ‘~1 < tC < zS is valid for w E F, . By 

tUs) we denote the second-by-count zero of function 5. The second player employs 
U”(W) at the positions close to set F, lying in domain F, . If a control u (w) such that 
&‘(a& u (4, uO(w))‘> 0 exists, then the position can hit onto set P. It can be shown that 

the maximum value of Cr’(10, u, u“) is realized at u = 0. Thus, the bound &‘(w, 0, 

C(w)) > Opoints up the risk of falling onto set F. 

Unfortunately, we have not succeeded in resolving effectively the question of the exis- 
tence of positions satisfying the estimate 

lim &‘(w -) F, 0, d’(w - F)) > 0 
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It can be shown that in the domain D,,r, l-j F the answer to this question is equivalent 
to the existence of positions sa~s~ing the estimate 

CP = -(P - x0(% ~1)) b,, + a,, I v” (w, TJ I - ~2 I vz” I>, 0 

a, = sin tr(,), 1 II,” I = 1 v” (w, tr = trcU) I, a,, = sin z,, b+, := cos TI 

while in the domain i3iL n F the question resolves the estimate 

cp (w) = --I” b,l f a,, I v* b, $1 1 - $, I 0,” ,, 0 

The set H IF I3 1~ (up) > 011 is defined in the domain 15,‘ > 0, zfzfUs) > 01 by the 
two equations 5 (20, zi) = S (ut, trcz,) = St’ ( w, 4 = 0 and by the two estimates cp (v) & 
0, t ~(~1 d Q. Unfortunately, we do not even know whether the set H is empty or not. 
If set H is not empty, then by Ii, we denote the domain occupied by the trajectories 
~~inte~~ing domain H in due course, tr (w) > trca, (tu E H). We denote the remain- 

ing domains w” [ 5 (w, 0) < 0, max tcgx/s 6 (w, t) >, 01 by Hz. By Hs we denote the do- 
main defined by the estimates B,[O > f (w, 0) = & = &, (p,(w) > 01, where a(w) 
is obtained from cp (w) by replacing tutj with xx. In these terms we state the results of 

the investigation without cumbersome proofs. 
8, 1, When w E W the controls u”, v” realize the time tc of first hitting onto set 

M and the second player cannot make the motion onto M late by using the pair uO, u. 

3.2, When w E H, the first player cannot lessen the time tr, i.e. cannot lead the 

position onto M earlier than by the instant tr by using any pair u, V* retaining the tra- 

jectory in domain H2. 

8.3, If the sets H;, Ha are empty, the control 

v, (w) = u* (a&, w E FE,0 

J.$ (w) = 8 (Z$), w E %,o 

Qj (lof = 0, w E W3,o 

does not permit the first player to lead the motion onto M if this motion starts outside 
the domain W” U [s Q R] or leaves this domain under nonoptimal actions of the first 

player. 
The control u” (zi) (v” ($)) is the control u“ (wu, &) after tr is replaced by r1 (h) , 

respectively. Domain WI,,, combines the positions admitting of %, ‘$ with estimates 

0 > 50 = 6 (w, 0) < &, & > t;a, as well as the positions not admitting of 72 but admit- 
ting of z, with bounds 0 > & f &. In domain wa,@ occxr the positions ad~tting of 

r, with estimates 0 >, &, < G1 < &. The remaining positions occur in domain Ws,o 

The geometric meaning of the difficulty mentioned is simple. Let w E [Wo 0 5% < 

0, J& > 01. Here the second player’s control u” is constructed from the condition t,’ (w, 
u, 8) 2 fy’ (w, u, v). If the first player employs I( # IL’, then & can increase up to zero, 

and tc receives a negative jump. When w E @‘am ttv\[ bt’” U Is < RI1 1’7 1 <I C &I 
the second player constructs vo from the condition L’ (w, u, 0 d L’ (w, LC, v). If the 
first player employs u f u’, the equality I& = 5, can be realized. The second player 

is in difficulty at these positions. If he should try to preserve or lessen LX (&J, then there 
is no guarantee that the first player would apply the control u” so that & (&f would 
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increase and, as a result, the position hit onto the set b = 0 (& = 0). 
The author has not succeeded in resolving the question of the existence of controls of 

the first player increasing the lesser maximum. Therefore, the theorem contains reserva- 
tions. The difficulty described is sufficiently typical. Its existence and ways for over- 
coming it were noted in [2-J. 
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We examine the optimal control problem for a system in which the process termination 
time is not fixed. The system of equations of motion contains a small parameter 
and is reduced to the form of systems with rotating phase. We assume that the 
frequency depends upon “slow time”, while the control occurs in the small terms, 
so that the system is weakly controllable, Using the averaging method we con- 
struct a solution of the optimal control problem and we assume that the time in- 
terval over which the process evolves is a quantity of the order of 1 I 8, where a 
is the small parameter. This assumption proves to be a natural one if the termi- 
nal manifold depends only on the slow variables. Thus, we investigate the cases, 
of interest in practice, of controlled systems with small but protracted controls. 
We solve certain concrete problems with the use of the canonic averaging me- 
thod developed. 

1, Strtrmeat of the ptobl8m. Let the system’s motion be described by the 
equations 

11’ = v (z) + eF (z, a, 9, u, 4, 9 PO) = 90 


